- Title
- Theoretical study of unimolecular decomposition of catechol
- Creator
- Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.
- Relation
- Journal of Physical Chemistry A Vol. 114, Issue 2, p. 1060-1067
- Publisher Link
- http://dx.doi.org/10.1021/jp909025s
- Publisher
- American Chemical Society
- Resource Type
- journal article
- Date
- 2010
- Description
- This study develops the reaction pathway map for the unimolecular decomposition of catechol, a model compound for various structural entities present in biomass, coal, and wood. Reaction rate constants at the high-pressure limit are calculated for the various possible initiation channels. It is found that catechol decomposition is initiated dominantly via hydroxyl H migration to a neighboring ortho carbon bearing an H atom. We identify the direct formation of o-benzoquinone to be unimportant at all temperatures, consistent with the absence of this species from experimental measurements. At temperatures higher than 1000 K, water elimination through concerted expulsion of a hydroxyl OH together with an ortho H becomes the most significant channel. Rice−Ramsperger−Kassel−Marcus simulations are performed to establish the branching ratio between these two important channels as a function of temperature and pressure. All unimolecular routes to the reported major experimental products (CO, 1,3-C₄H₆ and cyclo-C₅H₆) are shown to incur large activation barriers. The results presented herein should be instrumental in gaining a better understanding of the decomposition behavior of catechol-related compounds.
- Subject
- unimolecular decomposition; catechol; aromatics; compounds
- Identifier
- http://hdl.handle.net/1959.13/926669
- Identifier
- uon:9906
- Identifier
- ISSN:1089-5639
- Language
- eng
- Reviewed
- Hits: 2590
- Visitors: 2548
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|